Hochschule für Technik Stuttgart

Modulhandbuch

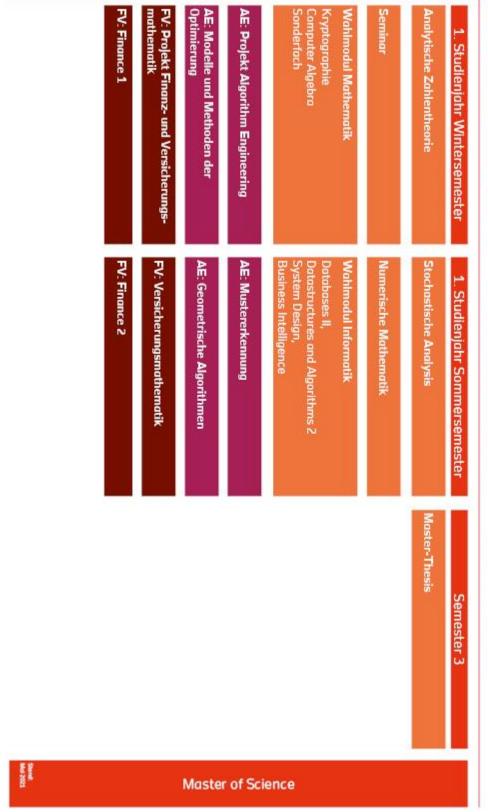
Mathematik Master-Studiengang

Inhaltsverzeichnis

Erläuterung	des Aufbaus	
Modulübers	sicht Master Mathematik (Vollzeit)	3
Modulübers	sicht Master Mathematik (Teilzeit)	4
	lienjahr, Vollzeit 1. und 2. Studienjahr, Teilzeit	
1.1 oh	nne Vertiefungsrichtung	5
1.1.1	Analytische Zahlentheorie	5
1.1.2	Seminar	6
1.1.3	Wahlmodul Mathematik	7
1.1.3.	1 Computer Algebra	7
1.1.3.	2 Kryptographie	8
1.1.4	Stochastische Analysis	
1.1.5	Numerische Mathematik	
1.1.6	Wahlmodul Informatik	
1.1.6.		
1.1.6.		
1.1.6.		
1.1.6.	4 Data Structures and Algorithms II	17
1.2 Ve	ertiefungsrichtung Algorithm Engineering	19
1.2.1	Projekt Algorithm Engineering	
1.2.2	Geometrische Algorithmen	20
1.2.3	Mustererkennung	21
1.2.4	Modelle und Methoden der Optimierung	22
1.3 Ve	ertiefungsrichtung Finanz- und Versicherungsmathematik	23
1.3.1	Projekt Finanz- und Versicherungsmathematik	
1.3.2	Finance 1	24
1.3.3	Finance 2	25
1.3.4	Versicherungsmathematik	26
2 3. Sem	ester, Vollzeit 5. Semester (6. Semester), Teilzeit	28
2.1 M	aster Thesis	28

Erläuterung des Aufbaus

Die Reihenfolge der Module im vorliegenden Modulhandbuch entspricht der in der Studien- und Prüfungsordnung (SPO) des Studiengangs. Sofern ein Modul mehrere Lehrveranstaltungen umfasst, werden diese in den entsprechenden Unterabschnitten des Moduls beschrieben. Beim Wahlpflichtmodul Informatik werden die vom Prüfungsausschuss bereits genehmigten Module aus dem Master-Studiengang Software Technology vorgestellt. Weitere Module können auf Antrag genehmigt werden.

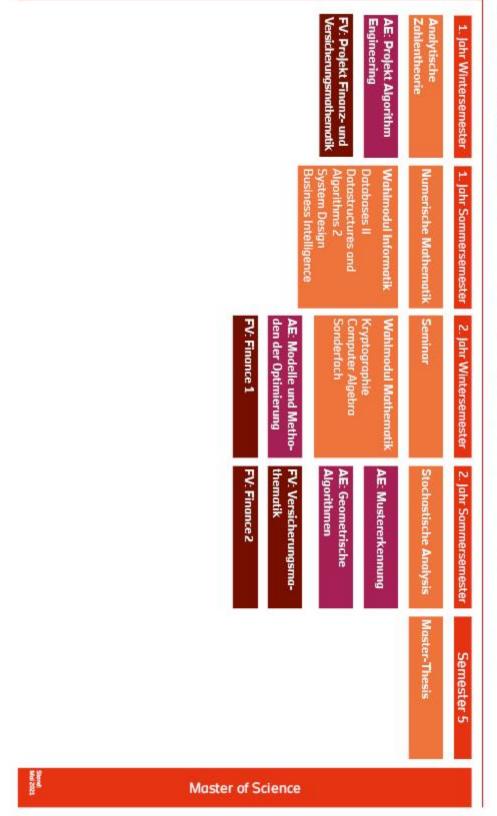

Alle Module werden einmal jährlich entweder im Winter- oder im Sommersemester angeboten. Bei der Gestaltung der Module wurde darauf geachtet, dass sich keine Abhängigkeiten zwischen Modulen ergeben, so dass ein Studienbeginn sowohl zum Winter- als auch zum Sommersemester möglich ist, und der Masterstudiengang sowohl in Vollzeit als auch als Teilzeitvariante studiert werden kann. Die Modulübersicht beschreibt jeweils den Studienplan bei Beginn im Wintersemester.

Modulübersicht Master Mathematik (Vollzeit)

Hochschule für Technik Stuttgart

Modulübersicht Master-Studiengang Mathematik (Vollzeit)

Wahlweise Vertiefungsrichtung: Algorithm Engineering (AE) oder Finanz- und Versicherungsmathematik (FV)



Modulübersicht Master Mathematik (Teilzeit)

Hochschule für Technik Stuttgart

Modulübersicht Master-Studiengang Mathematik (Teilzeit)

Wahlweise Vertiefungsrichtung: Algorithm Engineering (AE) oder Finanz- und Versicherungsmathematik (FV)

1 1. Studienjahr, Vollzeit -- 1. und 2. Studienjahr, Teilzeit

1.1 ohne Vertiefungsrichtung

1.1.1 Analytische Zahlentheorie

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Analytische Zahlentheorie
Kürzel:	AZT
Semesterstufe:	1. Studienjahr (Vollzeit)
	1. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Becker
Dozent(in):	Prof. Dr. Becker, Prof. Dr. Hauber
Zuordnung zum Curriculum:	Pflichtmodul
Häufigkeit:	Jedes Wintersemester
SWS:	6
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)
Präsenzzeit:	102 h
Eigenstudium:	138 h
Credit Points:	8
Voraussetzungen:	Funktionentheorie; förderlich sind auch Kenntnisse der Algebra
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	 den funktionentheoretischen Methodenapparat zur Lösung von Problemen aus anderen mathematischen Teildisziplinen (hier: der Zahlentheorie) einzusetzen.
Inhalte:	Die Vorlesung führt in zwei große Problemkreise der analytischen Zahlentheorie ein, in die Primzahltheorie und in die Transzendenztheorie.
	Primzahltheorie (Primzahlsatz, Riemannsche Zetafunktion, Riemannsche Vermutung, Folgerungen aus dem Primzahlsatz)
	Transzendenztheorie (Satz von Lindemann-Weierstraß, Satz von Gelfond-Schneider)
Prüfungsvorleistung:	Keine
Prüfungsleistung:	Mündliche Prüfung (20 Minuten) (benotet)
Medienform:	Tafelarbeit, Overhead-Projektor, Skript
Literatur/Software:	Burger, Tubbs: Making Transcendence transparent, Springer, Auflage: 2004
	 Helmberg: Analytische Zahlentheorie: Rund um den Primzahlsatz, De Gruyter, Auflage: 1, 2018
	Jameson: The Prime Number Theorem, Cambridge
	University Press, 2012

1.1.2 Seminar

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Seminar
Kürzel:	SEM
Semesterstufe:	1. Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Studiendekan*in Master Mathematik
Dozent(in):	Alle Professor*innen im Studiengang Mathematik
Zuordnung zum Curriculum:	Pflichtmodul
Häufigkeit:	Jedes Wintersemester
SWS.	2
Lehrform:	Seminar
Präsenzzeit:	34 h
Eigenstudium:	56 h
Credit Points:	3
Voraussetzungen:	Keine
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	• sich eine mathematische Problemstellung mit gehobenem Anspruch anzueignen,
	ein mathematisches Thema gehobenen Anspruchs eigenständig aufzubereiten und einem Fachpublikum zu präsentieren,
	Präsentationstechniken inhalts- und zielgruppengerecht einzusetzen,
	 zu bewerten, welche Kenntnisse bei einer Zielgruppe vorausgesetzt werden können.
Inhalte:	Die wechselnden Inhalt des Seminars behandeln jeweils ein fortgeschrittenes mathematisches Thema.
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Referat (unbenotet)
Prüfungsleistung:	
Medienform:	Tafelarbeit, Overhead-Projektor, Powerpointpräsentation, (abhängig von der Medienwahl der Vortragenden)
Literatur/Software:	wird vom Dozenten entsprechend der Thematik des Seminars vorgegeben

1.1.3 Wahlmodul Mathematik

1.1.3.1 Computer Algebra

Kürzel: Semesterstufe:	Computer Algebra CAL 1. Studienjahr (Vollzeit) 1. Studienjahr (Teilzeit)
Semesterstufe:	Studienjahr (Vollzeit) Studienjahr (Teilzeit)
	1. Studienjahr (Teilzeit)
	, , ,
Modulverantwortliche(r):	Prof. Dr. Weng
Dozent(in):	Prof. Dr. Weng, Prof. Dr. Hauber
Zuordnung zum Curriculum:	Wahlmodul Mathematik
Häufigkeit:	Jedes Sommersemester
SWS:	4
Lehrform:	Vorlesung
Präsenzzeit:	68 h
Eigenstudium:	112 h
Credit Points:	6
Voraussetzungen:	Keine
•	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	 das symbolische Rechnen mit dem Computer zu verstehen, Methoden des exakten Rechnens in Ergänzung und im Gegensatz zu Methoden aus der Numerik einzusetzen, wo häufig Fehlerbetrachtungen aufgrund der Verwendung von Näherungswerten für Zahlen benötigt werden.
Inhalte:	Zahlen und Polynome
	Euklidischer Algorithmus und Anwendungen
	 Polynome
	Ideale und Varietäten
	Resultante und Elimination
	Gröbner-Basen
3 3	Keine
3	Projektarbeit (benotet)
Prüfungsleistung:	
	Tafelarbeit, Skript, Moodle
Literatur/Software:	 Cox, Little, O'Shea: Ideals, Varieties, and Algorithms, Springer, 2015
	 Von zur Gathen: Modern Computer Algebra, Cambridge University Press, 2013
	Maple (Computeralgebra-System)

1.1.3.2 Kryptographie

1.1.3.2 Ni yptogrupine	
Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Kryptographie
Kürzel:	KRY
Semesterstufe:	1. Studienjahr (Vollzeit)
	1. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Hauber
Dozent(in):	Prof. Dr. Hauber, Prof. Dr. Weng
Zuordnung zum Curriculum:	Wahlmodul Mathematik
Häufigkeit:	Jedes Wintersemester
SWS:	4
Lehrform:	Vorlesung (ca. 80%) mit integrierten Übungen (ca. 20%)
Präsenzzeit:	68 h
Eigenstudium:	112 h
Credit Points:	6
Voraussetzungen:	Diskrete Mathematik
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	 Grundprobleme der IT-Sicherheit wie Vertraulichkeit und Authentifikation zu verstehen, die Anwendung mathematischer Methoden auf Probleme der Kryptographie zu überblicken, häufig eingesetzte kryptographische Algorithmen zu erläutern.
Inhalte:	
innate.	Einführung, Historie und Überblick Zahlanthaanstigeha Grundlagen
	Zahlentheoretische Grundlagen BSA (int.) Britan ab tracta und Enthantein mun a)
	 RSA (inkl. Primzahltests und Faktorisierung) Blockchiffren und symmetrische Verschlüsselung (Betriebsarten, DES, AES)
	 Diskrete Logarithmen (Zyklische Gruppen, endliche Körper, Diffie-Hellman, ElGamal, elliptische Kurven)
	Digitale Signaturen, Zertifikate und PKI
Prüfungsvorleistung:	Keine
Leistungsnachweis/ Prüfungsleistung:	Klausur (120 Minuten) (benotet)
Medienform:	Overheadfolien, Folienanschrieb, Rechnervorführung, Moodle
Literatur/Software:	 Buchmann: Einführung in die Kryptographie, Springer, 6. Aufl. 2016 Koblitz: A Course in Number Theory and Cryptography, Springer, 2. Aufl. 1994 Forster: Algorithmische Zahlentheorie, Springer Spektrum, 2.
	Aufl. 2015CrypTool (www.cryptool.org)

1.1.4 Stochastische Analysis

1.1.4 Stochastische Allarysis		
Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)	
Modulbezeichnung:	Stochastische Analysis	
Kürzel:	SAN	
Semesterstufe:	1. Studienjahr (Vollzeit)	
	2. Studienjahr (Teilzeit)	
Modulverantwortliche(r):	Prof. Dr. Reitz	
Dozent(in):	Prof. Dr. Reitz	
Zuordnung zum Curriculum:	Pflichtmodul	
Häufigkeit:	Jedes Sommersemester	
SWS:	4	
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)	
Präsenzzeit:	68 h	
Eigenstudium:	112 h	
Credit Points:	6	
Voraussetzungen:	Stochastik, Analysis 3, empfohlen sind Kenntnisse der Maß- und Integrationstheorie	
Lernziele/Kompetenz:	 Beherrschen wichtiger Konzepte aus der Stochastischen Analysis (stochastische Prozesse, stochastische Integrale, stochastische Differenzialgleichungen), Fähigkeit zur Anwendung der o.g. Konzepte. 	
Inhalte:	 Stochastische Prozesse, insbes. Brownsche Bewegung Martingale und Ito-Integrale Ito-Prozesse und das Ito'sche Lemma Stochastische Differenzialgleichungen und Diffusionen Anwendungen (PDEs, Modellieren von Prozessen) 	
Prüfungsvorleistung:	Keine	
Leistungsnachweis/	Mündliche Prüfung (20 Minuten) (benotet)	
Prüfungsleistung:		
Medienform:	Powerpoint, Tafelarbeit, Moodle	
Literatur/Software:	Karatzas, Shreve: Brownian Motion and Stochastic Calculus, Springer-Verlag New York, 1998	
	 Klebaner: Introduction to Stochastic Calculus with Applications, World Scientific, https://doi.org/10.1142/p821 March 2012 	
	Oksendal: Stochastic Differential Equations, Springer Verlag, 2003	
	Microsoft Excel	

1.1.5 Numerische Mathematik

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Numerische Mathematik
Kürzel:	NMA
Semesterstufe:	1. Studienjahr (Vollzeit)
Semestersture.	, , ,
	1. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Walter
Dozent(in):	Prof. Dr. Walter, Prof. Dr. Schneider, Prof. Dr. Brunk, Prof. Dr. Voß
Zuordnung zum Curriculum:	
Häufigkeit:	Jedes Sommersemester
SWS:	6
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)
Präsenzzeit:	102 h
Eigenstudium:	138 h
Credit Points:	8
Voraussetzungen:	Kenntnisse in Numerik und Differentialgleichungen (etwa entsprechend den Modulen NUM und DGL aus dem Bachelor-Studiengang Mathematik)
Lernziele/Kompetenz:	 Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage: selbständig Algorithmen zu entwickeln, zu bewerten und zu implementieren, numerische Verfahren auf realistische Probleme anzuwenden, MATLAB zur Lösung numerischer Probleme einzusetzen.
Inhalte:	 Hardware-Grundlagen Well posed problems Direkte und iterative Lösung großer linearer Gleichungssysteme Lösung nichtlinearer Gleichungen Optimierung Lösung von Differenzialgleichungen Algorithmen für Cluster- und Multicore-Rechner (Grid und Parallelrechner)
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Klausur (120 Minuten) (benotet)
Prüfungsleistung:	
Medienform:	Tafelarbeit, Skript, Moodle
Literatur/Software:	 Schwarz: Numerische Mathematik, Vieweg+Teubner Verlag, 2011 Strang: Wissenschaftliches Rechnen, Springer-Verlag Berlin Heidelberg, 2010 Matlab (Numerik-Software)
	-

1.1.6 Wahlmodul Informatik

1.1.6.1 System Design

Course:	Master Mathematics (full time and part time) and Software Technology	
Name of Module:	System Design	
Abbreviation:	SYD	
Semester:	First year Master Mathematics (full time)	
	Second year Master Mathematics (part time)	
	First year Master Software Technology	
Responsible:	Prof. Dr. Deininger	
Lecturers:	Prof. Dr. Deininger, Prof. Dr. Wanner	
Curriculum:	Elective Module Computer Science for Master Mathematics	
	Master Software Technology	
Frequency:	Each winter semester	
Semester Periods per Week:	4	
Method of Teaching:	Lecture with theoretical and practical exercises	
Student Work Load - Lectures:	68 h	
Student Work Load - Self Studies:	112 h	
Credit Points:	6	
Prerequisites:	Software Engineering, Object Oriented Software Implementation	
Final Knowledge and Skills:	Knowledge and understanding: On completion the student knows the different interrelationships between requirements and design and architectural choices of largescale systems. He or she knows the principles of software design and the different design views and knows how a system design affects the testability of a system. Disciplinary / professional skills: On completion the student is able to develop different design views and select fitting patterns for certain problems and draw from architectural choices, especially for large-scale systems. He or she is able to select and use appropriate modeling techniques. He or she can rate the consequences of certain design decisions.	
Index:	 Basic principles of design: terms and definitions, abstraction, decomposition, decoupling. Different design views and their elements. Methods, notations and patterns for different design views Measuring and testing of design. Special Design Topics: Frameworks & Libraries, Persistence, User Interfaces 	

Pre-Exam Requirements:	None
Method and Extent of Examination:	Written examination, 120 minutes
Media Form:	Blackboard, Powerpoint, Computer Presentations, Moodle
Literature/Software:	 Bass, Clements, Kazman: Software Architecture in Practice, 3. edition, Addison-Wesley Professional, 2012 Buschmann, Meunier, Rohnert, Sommerlad, Stal: Pattern-Oriented Software Architecture: A System of Patterns, John Wiley & Sons, 1996
	 Clements, Bachmann, Bass, Garlan, Ivers, Little, Nord, Stafford: Documenting Software Architectures, Addison- Wesley, 2nd edition, Addison-Wesley, 2010
	• Evans: Domain-Driven-Design, Addison- Wesley, 2008
	 Fowler: Patterns of Enterprise Application Architecture, Addison- Wesley, 2014
	 Gamma, Helm, Johnson, Vlissides: Design Patterns: Elements of Reusable OO Software. Addison-Wesley, 1997
	 Meyer: Object-Oriented Software Construction. Prentice Hall, 1997
	 Shaw, Clements: The Golden Age of Software Architecture, IEEE SOFTWARE, March/April 2006, 31-39
	 Szyperski: Component Software - Beyond Object- Oriented Programming. Addison-Wesley, 2002
	 Züllighoven: Object-Oriented Construction Handbook: Developing Application-Oriented Software with the Tools & Materials Approach. Morgan Kaufmann, 2004

1.1.6.2 Business Intelligence

Course:	Master Mathematics (full time and part time) and Software Technology
Name of Module:	Business Intelligence
Abbreviation:	ВІ
Semester:	First year Master Mathematics (full time) Second year Master Mathematics (part time)
	First year Master Software Technology
Responsible:	Prof. Koch
Lecturers:	Prof. Koch
Curriculum:	Elective Module Computer Science for Master Mathematics Elective Module Master Software Technology
Frequency:	Each winter semester
Semester Periods per Week:	4
Method of Teaching:	Lecture with theoretical and practical exercises
Student Work Load -	68 h

Lectures:	
Student Work Load - Self Studies:	112 h
Credit Points:	6
Prerequisites:	Database theory (especially normal forms, relational algebra, design procedures), relational systems, SQL, Middleware Technology, Bachelor-level mathematics
Final Knowledge and Skills:	Knowledge and understanding: On completion the student has a deeper understanding of goals and functionality of data warehouse systems. He or she has practical experience with a data warehouse system and insight into current business intelligence research issues.
	Disciplinary / professional skills: On completion the student is able to evaluate strengths and weaknesses of data warehouse systems, to build a data warehouse system, and to make informed decisions about different situations of data warehouse usage in practical projects within enterprise contexts.
Index:	 Purposes and application areas for data warehouses, case studies, comparison to database systems and transaction processing systems
	Reference model for data warehouses, data acquisition, monitoring, extraction, transformation, loading, data marts versus data warehouse, data warehouse bus architecture
	 Data analysis: OLAP, data mining (statistical methods, regression, value prediction, decision trees, association discovery, a priori method, neural networks, visualization)
	System architectures with middleware, web based architectures
	Multidimensional models and algebra
	 Conceptual and physical modeling: multidimensional entity relationship model, schema evolution, star join schemas, snow flaking, array structures, performance optimization (materialized views, efficient indexing techniques)
	 Implementation of data warehouses with different DBMS types, ROLAP, MOLAP, HOLAP; OLAP extensions of SQL
Pre-Exam Requirements:	None
Method and Extent of Examination:	Written examination, 90 minutes
Media Form:	Beamer presentation, Moodle, smartboard, computer presentation, practical computer exercises, lecture notes

Literature/Software:	• Adamson, Venerable: Data Warehouse Design Solutions, Wiley, 1998
	 Bauer, Günzel: Data Warehouse Systeme - Architektur, Entwicklung, Anwendung, dpunkt Verlag, 4. Aufl., 2013
	 Kimball: The Data Warehouse Toolkit - Practical Techniques for Building Dimensional Data Warehouses, Wiley, 1996
	 Kimball, Reeves, Ross, Thornthwaite: The Data Warehouse Life-cycle Toolkit - Expert Methods for Designing, Developing, and Deploying Data Warehouses, Wiley, 1998
	 Han, Pei, Kamber: Data Mining – Concepts and Techniques, Morgan Kaufmann, 2011
	• Witten, Frank: Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann, 3. Aufl., 2011
	Software: Microsoft SQL Server, RapidMiner

1.1.6.3 Databases II

Course:	Master Mathematics (full time and part time) and Software Technology
Name of Module:	Databases II (Advanced Topics in Databases)
Abbreviation:	DAB
Semester:	First year Master Mathematics (full time)
	Second year Master Mathematics (part time)
	First year Master Software Technology
Responsible:	Prof. Koch
Lecturers:	Prof. Koch
Curriculum:	Elective Module Computer Science for Master Mathematics
	Master Software Technology
Frequency:	Each summer semester
Semester Periods per Week:	4
Method of Teaching:	Lecture with theoretical and practical exercises
Student Work Load -	68 h
Lectures:	
Student Work Load - Self	112 h
Studies:	
Credit Points:	6
Prerequisites:	Data structures/algorithms; Bachelor level understanding of file systems, computer architecture, and databases; Entity Relationship
	Modeling; basic knowledge of the relational model and SQL

Final Knowledge and Skills:	Knowledge and understanding:
Tima Turowicage and Sixins.	On completion the student has a deeper understanding of DBMS functionality and in particular of modern system approaches. He or she has practical experience with at least one relational database system and insight into current database research issues.
	Disciplinary / professional skills:
	On completion the student is able to evaluate strengths and weaknesses of database and transaction processing systems and to make informed decisions about different situations of database usage in practical projects within enterprise contexts.
Index:	Review of principles of relational databases, advanced features of SQL, the MySQL DBMS
	Database programming (ODBC, SQL/CLI, JDBC, Embedded SQL, Dynamic SQL, SQLJ)
	Transaction management: review of basic properties, distributed and nested transactions, sagas, 2 phase and 3 phase commit protocol, long transactions, architecture and functionality of transaction processing systems
	Recovery: logging, checkpointing, savepointing, recovery after software and hardware failures, backup methods
	Concurrency control: 2 phase locking, isolation levels, timestamp and optimistic protocols
	Distributed databases: data fragmentation, replication, and allocation techniques; distributed recovery and concurrency control
	Mobile databases: architecture, data replication, transaction processing, performance
	Object-oriented and object-relational databases, comparison to relational systems
Pre-Exam Requirements:	None
Method and Extent of Examination:	Written examination, 120 minutes
Media Form:	Beamer presentation, Moodle, smartboard, computer presentation, practical computer exercises, lecture notes
Literature/Software:	 Bernstein, Newcomer: Principles of Transaction Processing for the System Professional, Morgan Kaufmann, 1997 Cattell: Object Data Management, Addison-Wesley, 1994 Ceri, Pelagatti: Distributed Databases, Principles and Systems, McGraw-Hill, 1984 Connolly, Begg, Strachan: Database Systems, A Practical Approach to Design, Implementation and Management, Addison-Wesley, 2001
	Date: An Introduction to Database Systems, Addison

Wesley,	1999
---------	------

- Elmasri, Navathe: Fundamentals of Database Systems, Addison Wesley 2004
- Gray, Reuter: Transaction Processing, Concepts and Techniques, Morgan Kaufmann, 1993
- Ozsu, Valduriez: Principles of Distributed Database Systems, Prentice Hall, 1999
- Stonebraker, Moore, Brown: Object-Relational DBMSs, Morgan Kaufmann, 1998

1.1.6.4 Data Structures and Algorithms II

Course:	Master Mathematics (full time and part time) and Software
	Technology
Name of Module:	Data Structures and Algorithms II (Advanced Topics in Data Structures and Algorithms)
Abbreviation:	DAS
Semester:	First year Master Mathematics (full time)
	Second year Master Mathematics (part time)
	First year Master Software Technology
Responsible:	Prof. Dr. Homberger
Lecturers:	Prof. Dr. Heusch, Prof. Dr. Homberger
Curriculum:	Elective Module Computer Science for Master Mathematics
	Elective Module Master Software Technology
Frequency:	Each summer semester
Semester Periods per Week:	4
Method of Teaching:	Lecture with theoretical and practical exercises
Student Work Load - Lectures:	68 h
Student Work Load - Self Studies:	112 h
Credit Points:	6
Prerequisites:	Basic principles of data structures and algorithms
Final Knowledge and Skills:	Knowledge and understanding: On completion the student understands algorithms for complex optimization problems used in decision making and automated coordination of self-interested decision makers. Moreover, the student knows advanced data structures for the efficient implementation of these algorithms. He or she knows about application areas of these optimization methods and data structures like Electronic Business, and Advanced Planning Systems. Disciplinary / professional skills:
	On completion the student is able to select and implement an appropriate algorithm for a given problem.
Index:	 Metaheuristics Parallelization of metaheuristics Multi-criteria optimization Decentralized optimization Collaborative planning and coordination Electronic negotiation
Pre-Exam Requirements:	None
Method and Extent of Examination:	Written examination, 120 minutes
Media Form:	
Literature/Software:	 Alba: Parallel evolutionary algorithms can achieve super-linear performance, Inform. Process. Lett. 82, 7-13, 2002 Dorigo, Gambardella: Ant colony system: a cooperative

- learning approach to the traveling salesman problem, IEEE Transactions on Evolutionary Computation 1(1), 53-66, 1997
- Eiben, Smith: Introduction to Evolutionary Computing, Springer, Berlin, 2003
- Fink, Homberger: Decentralized multi-project scheduling. In: Schwindt C., J. Zimmermann (eds.): Handbook on Project Management and Scheduling Vol. 2, International Handbooks on Information Systems, Springer, 2014
- Jennings, Faratin, Lomuscio, Parsons, Woolridge, Sierra: Automated negotiation: prospects, methods and challenges. Group Decision and Negotiation 10, 199-215, 2001
- Klein, Faratin, Sayama, Bar-Yam: Negotiating complex contracts. Group Decision and Negotiation 12, 111-125, 2003
- Stadtler: A framework for collaborative planning and state-of-the-art. OR spectrum 31, 5-30, 2009

1.2 Vertiefungsrichtung Algorithm Engineering

1.2.1 Projekt Algorithm Engineering

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Projekt Algorithm Engineering
Kürzel:	PAE
Semesterstufe:	Studienjahr (Vollzeit) Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Schneider
Dozent(in):	Prof. Dr. Müssigmann, Prof. Dr. Schneider, Prof. Dr. Wolpert
Zuordnung zum Curriculum:	Pflichtfach, Vertiefungsrichtung Algorithm Engineering
Häufigkeit:	Jedes Wintersemester
SWS:	4
Lehrform:	Praktikum
Präsenzzeit:	68 h
Eigenstudium:	142 h
Credit Points:	7
Voraussetzungen:	Geometrische Grundkenntnisse, Kenntnisse in objektorientierter Programmierung
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	• eine Aufgabenstellung aus der industriellen Geometrie zu erfassen,
	eine Aufgabenstellung zu strukturieren und in Mathematik und Programmcode umzusetzen,
	 eine Aufgabenstellung in Aufgabenpakete bzw. Programm-Module zu zerlegen und die Aufgabenpakete und Module auf einzelne Personen oder Teams zu verteilen,
	 Aufgabenpakete zu lösen, einzelne Klassen zu erstellen und Teillösungen und Klassen zu einem lauffähigen Programm zusammenzuführen,
	Lösungen zu dokumentieren und zu präsentieren.
Inhalte:	Eine Problemstellung aus der industriellen Geometrie ist mathematisch und programmiertechnisch umzusetzen und mit aktuellen Methoden und Werkzeugen der Informatik zu realisieren.
Prüfungsvorleistung:	Keine
Leistungsnachweis/ Prüfungsleistung:	Projektarbeit (benotet)
Medienform:	Rechnervorführung, Tafelarbeit, Powerpointpräsentation
Literatur/Software:	wird vom jeweiligen Dozenten in Abhängigkeit des konkreten Themas festgelegt

1.2.2 Geometrische Algorithmen

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Geometrische Algorithmen
Kürzel:	GEA
Semesterstufe:	1. Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Wolpert
Dozent(in):	Prof. Dr. Wolpert
Zuordnung zum Curriculum:	Pflichtmodul Vertiefungsrichtung Algorithm Engineering
Häufigkeit:	Jedes Sommersemester
SWS:	4
Lehrform:	Vorlesung (ca. 2/3) mit integrierten Übungen (ca. 1/3)
Präsenzzeit:	68 h
Eigenstudium:	82 h
Credit Points:	5
Voraussetzungen:	Algorithmen und Datenstrukturen
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	 fortgeschrittene geometrische Problemstellungen zu verstehen,
	 effiziente und praktikable Algorithmen zur Lösung geometrischer Probleme zu entwickeln,
	 die algorithmische Komplexität von geometrischen Problemen zu analysieren.
Inhalte:	Randomisierte geometrische Algorithmen:
	o konvexe Hülle 3d, Delaunay-Triangulierung,
	 Configuration Space Analyse
	Proximity Queries: BVH, Voxmap Pointshell
	Robot Motion Planning: Minkowski-Summe, PRM, RRT, EST
	 Meshing: Quadtrees, Marching Cubes, Isotopic Meshing
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Mündliche Prüfung (20 Minuten) (benotet)
Prüfungsleistung:	
Medienform:	Powerpointpräsentation, Tafelarbeit, Moodle
Literatur/Software:	de Berg, Cheong, van Krefeld, Overmars: Computational Geometry, Springer-Verlag, 2008
	Goodman, O'Rourke: Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC, 2004

1.2.3 Mustererkennung

1.2.3 Wustererkennung	Master Childian and Mathematile (Mallage and Tallage)
Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Mustererkennung
Kürzel:	MER
Semesterstufe:	1. Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Müßigmann
Dozent(in):	Prof. Dr. Müßigmann
Zuordnung zum Curriculum:	Pflichtmodul Vertiefungsrichtung Algorithm Engineering
Häufigkeit:	Jedes Sommersemester
SWS:	4
Lehrform:	Vorlesung (ca. 3/4) mit integrierten Übungen (ca. 1/4), Labor
Präsenzzeit:	68 h
Eigenstudium:	82 h
Credit Points:	5
Voraussetzungen:	Keine
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	Techniken der Mustererkennung in Bildern einzusetzen
	fortgeschrittene mathematische Methoden zur Mustererkennung in Bildern zu verstehen
	eigenständig Verfahren zur Mustererkennung in Bildern zu entwickeln und anzuwenden.
Inhalte:	Hough-Transformation
	Canny-Filter
	Gabor-Transformation
	Bildfolgenanalyse
	Klassifikation
	Deep Learning
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Mündliche Prüfung (20 Minuten) (benotet)
Prüfungsleistung:	
Medienform:	Skript, Tablet-PC, Beamer, Powerpointpräsentation, Rechnervorführung, Moodle
Literatur/Software:	Bredies, Lorenz: Mathematische Bildverarbeitung, Vieweg Verlag, 2011
	Bishop: Pattern Recognition and Machine Learning, Springer-Verlag, 2011
	 Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2017
	• Szeliski: Computer Vision — Algorithms and Applications, Springer-Verlag, 2011
	Brigola: Fourieranalysis, Distributionen und Anwendungen, Vieweg-Verlag, 1997
	• Louis, Maaß, Rieder: Wavelets, Teubner-Verlag, 1998

1.2.4 Modelle und Methoden der Optimierung

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Modelle und Methoden der Optimierung
Kürzel:	MMO
Semesterstufe:	1. Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Bauer
Dozent(in):	Prof. Dr. Bauer, Prof. Dr. Preissler
Zuordnung zum Curriculum:	Pflichtmodul Vertiefungsrichtung Algorithm Engineering
Häufigkeit:	Jedes Wintersemester
SWS:	4
Lehrform:	Vorlesung (ca. 3/4) mit integrierten Übungen (ca. 1/4)
Präsenzzeit:	68 h
Eigenstudium:	112 h
Credit Points:	6
Voraussetzungen:	Keine
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage
	 Anwendungsprobleme als konvexe, nichtlineare oder dynamische Optimierungsprobleme zu identifizieren und zu modellieren, geeignete Lösungsvefahren auszuwählen oder weiter zu entwickeln.
Inhalte:	Nichtlineare Optimierung: quadratische und konvexe Optimierung, Lagrange-Multiplikatoren und Dualitätstheorie, Karush-Kuhn-Tucker-Bedingungen
	Gradienten- und Konjugierte-Gradientenverfahren
	Dynamische Programmierung
	Kontrolltheorie: Maximumprinzip von Pontryagin, Hamilton-Jacobi-Bellmann-Gleichung
	Anwendungsmodelle (z.B. Investitionsprobleme,
	Produktionsprobleme).
Prüfungsvorleistung:	Produktionsprobleme). Keine
Prüfungsvorleistung: Leistungsnachweis/	
Leistungsnachweis/	Keine
	Keine Klausur (120 Minuten) (benotet) Skript, Beamer, Powerpointpräsentation,
Leistungsnachweis/ Prüfungsleistung:	Keine Klausur (120 Minuten) (benotet)
Leistungsnachweis/ Prüfungsleistung: Medienform:	Keine Klausur (120 Minuten) (benotet) Skript, Beamer, Powerpointpräsentation, Rechnervorführung, Moodle Boyd, Vandenberghe: Convex Optimization, Cambridge
Leistungsnachweis/ Prüfungsleistung: Medienform:	Keine Klausur (120 Minuten) (benotet) Skript, Beamer, Powerpointpräsentation, Rechnervorführung, Moodle Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 7. Auflage, 2009 Stein: Grundzüge der globalen Optimierung, Springer
Leistungsnachweis/ Prüfungsleistung: Medienform:	Keine Klausur (120 Minuten) (benotet) Skript, Beamer, Powerpointpräsentation, Rechnervorführung, Moodle Boyd, Vandenberghe: Convex Optimization, Cambridge University Press, 7. Auflage, 2009 Stein: Grundzüge der globalen Optimierung, Springer Spektrum, 2018 Stein: Grundzüge der nichtlinearen Optimierung,

1.3 Vertiefungsrichtung Finanz- und Versicherungsmathematik

1.3.1 Projekt Finanz- und Versicherungsmathematik

•	•
Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Projekt Finanz- und Versicherungsmathematik
Kürzel:	PRF
Semesterstufe:	1. Studienjahr (Vollzeit)
	1. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Wenig
Dozent(in):	Prof. Dr. Becker, Prof. Dr. Brunk, Prof. Dr. Weng
Zuordnung zum Curriculum:	Pflichtmodul Vertiefungsrichtung Finanz- und Versicherungs- mathematik
Häufigkeit:	Jedes Wintersemester
SWS:	4
Lehrform:	Praktikum
Präsenzzeit:	68 h
Eigenstudium:	112 h
Credit Points:	6
Voraussetzungen:	Kenntnisse in Statistik, Finanz- und Versicherungsmathematik (aus einem Bachelor-Studiengang), Kenntnisse aus einer Programmiervorlesung
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	eine komplexe Aufgabenstellung aus der Finanz- und Versicherungsmathematik zu erfassen, diese zu strukturieren, in Aufgabenpakete zu teilen und auf einzelne Teams zu verteilen,
	die Teilaufgaben mit Werkzeugen aus der Finanz- und Versicherungsmathematik und der IT zu lösen und die Teillösungen zusammenzuführen,
	Lösungen zu dokumentieren und zu präsentieren.
Inhalte:	Problemstellungen aus der Finanz- und Versicherungsmathematik sind mathematisch umzusetzen und mit adäquaten Methoden und Werkzeugen der Informatik zu realisieren.
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Projektarbeit (benotet)
Prüfungsleistung:	
Medienform:	Rechnervorführung, Skript, Powerpointpräsentation
Literatur/Software:	Abhängig vom gewählten Thema

1.3.2 Finance 1

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Finance 1
Kürzel:	FIN
Semesterstufe:	1.Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Reitz
Dozent(in):	Prof. Dr. Reitz
Zuordnung zum Curriculum:	Pflichtmodul Vertiefungsrichtung Finanz- und Versicherungsmathematik
Häufigkeit:	Jedes Wintersemester
SWS:	4
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)
Präsenzzeit:	68 h
Eigenstudium:	112 h
Creditpoints:	6
Voraussetzungen:	Kenntnisse in Finanzmathematik, Statistik, Wahrscheinlichkeitsrechnung
Lernziele/Kompetenz:	Beherrschen fortgeschrittener quantitativer Methoden, die beim Risikomanagement und der Risikomodellierung in der Finanzindustrie zum Einsatz kommen
Inhalte:	Risikomanagement (wichtige quantitative Aspekte des Risikomanagements: Risikoarten, Risikosteuerung, Risikomaße, Verfahren zur Risiko- und Kapitalallokation, Performancemessung)
	Stochastische Prozesse (Darstellung wichtiger Prozesstypen (stetige Prozesse und Sprungprozesse) und deren Verwendung im Finance-Bereich, Beschreibung des einschlägigen mathematischen Rahmens, Verfahren zur Schätzung der Prozessparameter)
	Portfoliomodelle (Portfoliomodelle für Marktrisiken, Validierungsansätze, Kreditportfoliomodelle)
	Portfoliooptimierung (Effiziente Portfolien, Markowitz, CAPM, Asset Allocation)
	Aktuelle Themen (z.B. aufsichtliche Entwicklungen, Ratingverfahren, ABS)
Prüfungsvorleistung:	
Leistungsnachweis/ Prüfungsleistung:	Mündliche Prüfung (20 Minuten) (benotet)
Medienform:	Powerpoint, Tafelarbeit, Moodle, EXCEL
Literatur/Software:	Bluhm, Overbeck, Wagner: Introduction to Credit Risk Modeling, Chapman and Hall/CRC, 2. Auflage, 2010
	Cottin, Döhler: Risikoanalyse: Modellierung, Beurteilung und Management von Risiken mit Praxisbeispielen, Vieweg Studium, 2. Auflage, 2013
	Tretteg Stadiani, 1.7 tanage, 1015

•	Franke, Härdle, Hafner: Einführung in die Statistik der Finanzmärkte, Springer, 2. Auflage 2004
•	Henking, Bluhm, Fahrmeir: Kreditrisikomessung. Statistische Grundlagen, Methoden und Modellierung Springer, 2006
•	Hull: Risikomanagement: Banken, Versicherungen und andere Finanzinstitutionen, Pearson Studium, 2014
•	Hull: Optionen, Futures und andere Derivate, Pearson Studium, 8. Auflage, 2012
•	Korn: Moderne Finanzmathematik - Theorie und praktische Anwendung, Springer Spektrum, 2014
•	Martin, Reitz, Wehn: Kreditderivate und Kreditrisikomodelle: Eine mathematische Einführung, Springer Spektrum, 2. Auflage, 2014
•	McNeil, Frey, Embrechts: Quantitative Risk Management: Concepts, Techniques and Tools, Princeton Series in Finance, 2015
•	Reitz: Mathematik in der modernen Finanzwelt: Derivate, Portfoliomodelle und Ratingverfahren, Vieweg+Teubner Verlag, 2011
•	Schmid, Trede: Finanzmarktstatistik, Springer, 2006

1.3.3 Finance 2

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Finance 2
Kürzel:	FIN 2
Semesterstufe:	1.Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Reitz
Dozent(in):	Prof. Dr. Reitz
Zuordnung zum Curriculum:	
	Versicherungsmathematik
Häufigkeit:	Jedes Sommersemester
SWS:	4
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)
Präsenzzeit:	68 h
Eigenstudium:	82 h
Creditpoints:	5
Voraussetzungen:	Kenntnisse in Finanzmathematik, insbesondere
	fortgeschtrittene Bewertungsverfahren wichtiger Kapitalmarktprodukte (Aktien, Anleihen, Derivate).
Lernziele/Kompetenz:	Beherrschen fortgeschrittener quantitativer Methoden der Finanzmathematik und deren Verwendung bei der Bewertung von Derivaten
Inhalte:	 Anwendung wichtiger Resultate aus der Stochastischen Analysis bei der Modellierung von Finanzinstrumenten (Stochastische Prozesse, Filtrationen, Stochastische DGLn)

	Funktionsweise und Modellierung von Aktien-, Immobilien- und Zinsmärkten
	 Bewertung von Zahlungsströmen (Arbitragetheorie, Marktgleichgewichte, Replikation, stochastische Zahlungsströme im Finanz- und Versicherungsbereich, effiziente Märkte, vollständige und unvollständige Märkte, Martingalmaße, risikoneutrale Bewertung, Ein- und Mehrperiodenmodelle)
	 Quantitative Modelle zur Bewertung von Derivaten (Zinssätze und Zinsprodukte; Zinssensitivitäten; Zinsstrukturmodelle; Optionspreistheorie, Bewertung von Aktien- und FX-Derivaten im stetigen und diskreten Fall; Binomialbäume; Sensitivitäten; numerische Verfahren) Kreditderivate (quantitative Methoden zur Bewertung von
	single-name- und portfolioabhängigen Kreditderivaten)
Prüfungsvorleistung:	
Leistungsnachweis/	Mündliche Prüfung (40 Minuten) (benotet)
Prüfungsleistung:	
Medienform:	Powerpoint, Tafelarbeit, Moodle, EXCEL
Literatur/Software:	 Bingham, Kiesel: Risk-Neutral Valuation, Springer-Verlag London, 2004
	 Björk: Arbitrage Theory in Continuous Time, Oxford Univ. Press, 3. Auflage, 2009
	 Hull: Options, Futures and other Derivatives, Prentice Hall, 8. Auflage, 2011
	Neftci: Mathematics of Financial Derivatives, Academic Press, 3. Auflage, 2006
	Roman: Introduction to the Mathematics of Finance, Springer-Verlag New York, 2012
	 Reitz u.a.: Kreditderivate und Kreditrisikomodelle: Eine mathematische Einführung, Vieweg + Teubner Verlag, 2014
	Reitz u.a.: Zinsderivate: Eine Einführung in Produkte, Bewertung, Risiken, Vieweg+Teubner Verlag, 2004
	 Reitz: Mathematik in der modernen Finanzwelt: Derivate, Portfoliomodelle und Ratingverfahren, Vieweg+Teubner Verlag. 2011
	 Seydel: Tools for Computational Finance, Springer Verlag, 2017
	 Shreve: Stochastic Calculus for Finance I, II, Springer- Verlag New York, 2004

${\bf 1.3.4} \quad Versicherungsmathematik$

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Versicherungsmathematik
Kürzel:	VSI
Semesterstufe:	1. Studienjahr (Vollzeit)
	2. Studienjahr (Teilzeit)
Modulverantwortliche(r):	Prof. Dr. Weng

Dozent(in):	Prof. Dr. Becker, Prof. Dr. Weng
Zuordnung zum Curriculum:	Vertiefungsrichtung Finanz- und Versicherungsmathematik
Häufigkeit	Jedes Sommersemester
SWS:	4
Lehrform:	Vorlesung (ca. 75%) mit integrierten Übungen (ca. 25%)
Präsenzzeit:	68 h
Eigenstudium:	82 h
Credit Points:	5
Voraussetzungen:	Kenntnisse in Stochastik und Versicherungsmathematik (aus einem Bachelor-Studiengang)
Lernziele/Kompetenz:	Die Studierenden
	 beherrschen die wesentlichen Begriffe und Methoden der Schadenversicherungsmathematik,
	 können ihr Wissen auf konkrete Fragestellungen aus der Praxis anwenden.
Inhalte:	Risikomodelle (individuelles und kollektives Modell, Gesamtschadenverteilung)
	Tarifierung (Prämienprinzipien, Statistiken, Schätzverfahren)
	Reservierung (Schadenrückstellung, Abwicklungsverfahren)
	 Rückversicherung (Formen der Risikoteilung, Berechnung von Rückversicherungsprämien)
Prüfungsvorleistung:	
Leistungsnachweis/	Klausur (120 Minuten) (benotet)
Prüfungsleistung:	
Medienform:	Tafelarbeit, Skript, Rechnervorführung
Literatur/Software:	 Goelden et. al., Schadensversicherungsmathematik, Springer Verlag, 2016 Schmidt, Versicherungsmathematik, Springer Verlag, 2009 DGVFM, Aktuarielle Methoden der Tarifgestaltung in der Schaden/Unfallversicherung, Verlag Versicherungswirtschaft, 2015 Mack, Schadenversicherungsmathematik, Verlag Versicherungswirtschaft, 2002 Heilmann und Schröter, Grundbegriffe der Risikotheorie, Verlag Versicherungswirtschaft, 2013

2 3. Semester, Vollzeit -- 5. Semester (6. Semester), Teilzeit

2.1 Master Thesis

Studiengang:	Master-Studiengang Mathematik (Vollzeit und Teilzeit)
Modulbezeichnung:	Master Thesis
Kürzel:	MAS
Semesterstufe:	3. Semester (Vollzeit)
	5. Semester (Teilzeit)
Modulverantwortliche(r):	Studiendekan*in Master Mathematik
Dozent(in):	Alle Professor*innen im Studiengang Mathematik
Zuordnung zum Curriculum:	Hauptstudium
Häufigkeit:	Jedes Semester
SWS:	Master-Arbeit
	• 0
	Master-Seminar
	• 2
Lehrform:	Master-Arbeit
	Projektarbeit
	Master-Seminar
	Seminar
Präsenzzeit:	Master-Arbeit
	• 0 h
	Master-Seminar
	• 34 h
Eigenstudium:	Master-Arbeit
	• 780 h
	Master-Seminar
	• 86 h
Credit Points:	Master-Arbeit
	• 26
	Master-Seminar
	• 4
Voraussetzungen:	41 Credit Points aus Modulen des ersten Studienjahrs (Vollzeit) bzw. der ersten beiden Studienjahre (Teilzeit)
Lernziele/Kompetenz:	Nach erfolgreicher Teilnahme am Modul sind die Studierenden in der Lage:
	Master-Arbeit:
	 relevante Quellen für Informationen zu mathematischen Fragestellungen zu benennen und diese sinnvoll zu nutzen,
	 den aktuellen Forschungsstand in einem spezifischen Teilgebiet der Mathematik aufzubereiten und schriftlich darzustellen,
	 selbständig zu einem wissenschaftlichen Thema zu recherchieren und Quellen adäquat zu bewerten,
	ein anspruchsvolles Thema zu analysieren und

	Lösungsvorschläge zu entwickeln,
	 ein Forschungsthema im wissenschaftlichen Umfeld zu identifizieren und zu strukturieren,
	 ein Forschungsprojekt selbständig zu planen und durchzuführen.
	Master-Seminar
	 den aktuellen Forschungsstand in einem spezifischen Teilgebiet der Mathematik zielgruppengerecht zu präsentieren,
	 eigene Ergebnisse aus einem Forschungsprojekt darzustellen und fachlich zu diskutieren.
Inhalte:	Master-Arbeit
	Selbständige Bearbeitung eines Themas aus dem Bereich der Mathematik, auch möglich in Kooperation mit der Praxis oder im Zusammenhang eines Forschungsprojekts.
	Master-Seminar
	• Präsentation der Arbeit und der Ergebnisse mit Befragung durch die Gutachter.
Prüfungsvorleistung:	Keine
Leistungsnachweis/	Master-Arbeit
Prüfungsleistung:	Abschlussarbeit (benotet): Wie in der Studien- und Prüfungsordnung festgelegt, sind drei schriftliche, gebundene Fassungen der Master-Arbeit abzugeben.
	Master-Seminar
	 Abschlusspräsentation (benotet): 30-minütige Präsentation der Master-Arbeit mit anschließender 15-minütiger Befragung, Poster.
	Für die Modulnote Master Thesis werden die Noten für die Master-Arbeit und das Master-Seminar im Verhältnis 5:1 gewichtet.
Medienform:	Beamer, Tafelarbeit, Overhead-Projektor
Literatur/Software:	abhängig vom jeweiligen Thema der Master-Thesis
-	